Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; 111(2): e16280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38334273

RESUMEN

PREMISE: Cultivation and naturalization of plants beyond their natural range can bring previously geographically isolated taxa together, increasing the opportunity for hybridization, the outcomes of which are not predictable. Here, we explored the phenotypic and genomic effects of interspecific gene flow following the widespread cultivation of Mentha spicata (spearmint), M. longifolia, and M. suaveolens. METHODS: We morphologically evaluated 155 herbarium specimens of three Mentha species and sequenced the genomes of a subset of 93 specimens. We analyzed the whole genomes in a population and the phylogenetic framework and associated genomic classifications in conjunction with the morphological assessments. RESULTS: The allopolyploid M. spicata, which likely evolved in cultivation, had altered trichome characters, that is possibly a product of human selection for a more palatable plant or a byproduct of selection for essential oils. There were signs of genetic admixture between mints, including allopolyploids, indicating that the reproductive barriers between Mentha species with differences in ploidy are likely incomplete. Still, despite gene flow between species, we found that genetic variants associated with the cultivated trichome morphology continue to segregate. CONCLUSIONS: Although hybridization, allopolyploidization, and human selection during cultivation can increase species richness (e.g., by forming hybrid taxa), we showed that unless reproductive barriers are strong, these processes can also result in mixing of genes between species and the potential loss of natural biodiversity.


Asunto(s)
Mentha , Aceites Volátiles , Humanos , Mentha/genética , Flujo Génico , Filogenia , Aceites Volátiles/farmacología , Hibridación Genética
2.
New Phytol ; 242(2): 774-785, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38389217

RESUMEN

C4 photosynthesis is a key innovation in land plant evolution, but its immediate effects on population demography are unclear. We explore the early impact of the C4 trait on the trajectories of C4 and non-C4 populations of the grass Alloteropsis semialata. We combine niche models projected into paleoclimate layers for the last 5 million years with demographic models based on genomic data. The initial split between C4 and non-C4 populations was followed by a larger expansion of the ancestral C4 population, and further diversification led to the unparalleled expansion of descendant C4 populations. Overall, C4 populations spread over three continents and achieved the highest population growth, in agreement with a broader climatic niche that rendered a large potential range over time. The C4 populations that remained in the region of origin, however, experienced lower population growth, rather consistent with local geographic constraints. Moreover, the posterior transfer of some C4-related characters to non-C4 counterparts might have facilitated the recent expansion of non-C4 populations in the region of origin. Altogether, our findings support that C4 photosynthesis provided an immediate demographic advantage to A. semialata populations, but its effect might be masked by geographic contingencies.


Asunto(s)
Fotosíntesis , Poaceae , Poaceae/genética , Fenotipo , Demografía
3.
New Phytol ; 240(5): 2072-2084, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793435

RESUMEN

Lateral gene transfer (LGT) is the movement of DNA between organisms without sexual reproduction. The acquired genes represent genetic novelties that have independently evolved in the donor's genome. Phylogenetic methods have shown that LGT is widespread across the entire grass family, although we know little about the underlying dynamics. We identify laterally acquired genes in five de novo reference genomes from the same grass genus (four Alloteropsis semialata and one Alloteropsis angusta). Using additional resequencing data for a further 40 Alloteropsis individuals, we place the acquisition of each gene onto a phylogeny using stochastic character mapping, and then infer rates of gains and losses. We detect 168 laterally acquired genes in the five reference genomes (32-100 per genome). Exponential decay models indicate that the rate of LGT acquisitions (6-28 per Ma) and subsequent losses (11-24% per Ma) varied significantly among lineages. Laterally acquired genes were lost at a higher rate than vertically inherited loci (0.02-0.8% per Ma). This high turnover creates intraspecific gene content variation, with a preponderance of them occurring as accessory genes in the Alloteropsis pangenome. This rapid turnover generates standing variation that can ultimately fuel local adaptation.


Asunto(s)
Transferencia de Gen Horizontal , Poaceae , Humanos , Filogenia , Poaceae/genética , Genoma , Evolución Molecular
5.
Ann Bot ; 132(3): 365-382, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37422712

RESUMEN

BACKGROUND: Numerous groups of plants have adapted to CO2 limitations by independently evolving C4 photosynthesis. This trait relies on concerted changes in anatomy and biochemistry to concentrate CO2 within the leaf and thereby boost productivity in tropical conditions. The ecological and economic importance of C4 photosynthesis has motivated intense research, often relying on comparisons between distantly related C4 and non-C4 plants. The photosynthetic type is fixed in most species, with the notable exception of the grass Alloteropsis semialata. This species includes populations exhibiting the ancestral C3 state in southern Africa, intermediate populations in the Zambezian region and C4 populations spread around the palaeotropics. SCOPE: We compile here the knowledge on the distribution and evolutionary history of the Alloteropsis genus as a whole and discuss how this has furthered our understanding of C4 evolution. We then present a chromosome-level reference genome for a C3 individual and compare the genomic architecture with that of a C4 accession of A. semialata. CONCLUSIONS: Alloteropsis semialata is one of the best systems in which to investigate the evolution of C4 photosynthesis because the genetic and phenotypic variation provides a fertile ground for comparative and population-level studies. Preliminary comparative genomic investigations show that the C3 and C4 genomes are highly syntenic and have undergone a modest amount of gene duplication and translocation since the different photosynthetic groups diverged. The background knowledge and publicly available genomic resources make A. semialata a great model for further comparative analyses of photosynthetic diversification.


Asunto(s)
Dióxido de Carbono , Poaceae , Poaceae/genética , Plantas , Fotosíntesis/genética , Fenotipo
6.
Plant Cell Environ ; 46(8): 2310-2322, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37184423

RESUMEN

C4 photosynthesis results from anatomical and biochemical characteristics that together concentrate CO2 around ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), increasing productivity in warm conditions. This complex trait evolved through the gradual accumulation of components, and particular species possess only some of these, resulting in weak C4 activity. The consequences of adding C4 components have been modelled and investigated through comparative approaches, but the intraspecific dynamics responsible for strengthening the C4 pathway remain largely unexplored. Here, we evaluate the link between anatomical variation and C4 activity, focusing on populations of the photosynthetically diverse grass Alloteropsis semialata that fix various proportions of carbon via the C4 cycle. The carbon isotope ratios in these populations range from values typical of C3 to those typical of C4 plants. This variation is statistically explained by a combination of leaf anatomical traits linked to the preponderance of bundle sheath tissue. We hypothesize that increased investment in bundle sheath boosts the strength of the intercellular C4 pump and shifts the balance of carbon acquisition towards the C4 cycle. Carbon isotope ratios indicating a stronger C4 pathway are associated with warmer, drier environments, suggesting that incremental anatomical alterations can lead to the emergence of C4 physiology during local adaptation within metapopulations.


Asunto(s)
Plantas , Poaceae , Poaceae/metabolismo , Plantas/metabolismo , Fotosíntesis/fisiología , Carbono/metabolismo , Isótopos de Carbono/metabolismo , Hojas de la Planta/metabolismo , Dióxido de Carbono/metabolismo
7.
Nat Ecol Evol ; 7(3): 414-423, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36702857

RESUMEN

Phenotypic plasticity in ancestral populations is hypothesized to facilitate adaptation, but evidence is piecemeal and often contradictory. Further, whether ancestral plasticity increases the probability of parallel adaptive changes has not been explored. The most general finding is that ancestral responses to a new environment are reversed following adaptation (known as reversion). We investigated the contribution of ancestral plasticity to adaptive evolution of gene expression in two independently evolved lineages of zinc-tolerant Silene uniflora. We found that the general pattern of reversion is driven by the absence of a widespread stress response in zinc-adapted plants compared with zinc-sensitive plants. We show that ancestral plasticity that moves expression closer to the optimum value in the new environment influences the evolution of gene expression among genes that are likely to be involved in adaptation and increases the chance that genes are recruited repeatedly during adaptation. However, despite convergence in gene expression levels between independently adapted lineages, ancestral plasticity does not influence how similar expression values of adaptive genes become. Surprisingly, we also observed that ancestral plasticity that increases fitness often becomes genetically determined and fixed, that is, genetically assimilated. These results emphasize the important role of ancestral plasticity in parallel adaptation.


Asunto(s)
Silene , Silene/genética , Evolución Biológica , Zinc , Adaptación Fisiológica , Aclimatación
8.
Mol Ecol ; 31(22): 5846-5860, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36089907

RESUMEN

Ecotypes are distinct populations within a species that are adapted to specific environmental conditions. Understanding how these ecotypes become established, and how they interact when reunited, is fundamental to elucidating how ecological adaptations are maintained. This study focuses on Themeda triandra, a dominant grassland species across Asia, Africa and Australia. It is the most widespread plant in Australia, where it has distinct ecotypes that are usually restricted to either wetter and cooler coastal regions or the drier and hotter interior. We generate a reference genome for T. triandra and use whole genome sequencing for over 80 Themeda accessions to reconstruct the evolutionary history of T. triandra and related taxa. Organelle phylogenies confirm that Australia was colonized by T. triandra twice, with the division between ecotypes predating their arrival in Australia. The nuclear genome provides evidence of differences in the dominant ploidal level and gene-flow among the ecotypes. In northern Queensland there appears to be a hybrid zone between ecotypes with admixed nuclear genomes and shared chloroplast haplotypes. Conversely, in the cracking claypans of Western Australia, there is cytonuclear discordance with individuals possessing the coastal chloroplast and interior clade nuclear genome. This chloroplast capture is potentially a result of adaptive introgression, with selection detected in the rpoC2 gene which is associated with water use efficiency. The reason that T. triandra is the most widespread plant in Australia appears to be a result of distinct ecotypic genetic variation and genome duplication, with the importance of each depending on the geographic scale considered.


Asunto(s)
Cloroplastos , Hibridación Genética , Australia , Cloroplastos/genética , Variación Genética/genética , Haplotipos/genética , Filogenia
9.
J Exp Bot ; 73(10): 3189-3204, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35293994

RESUMEN

Previous studies have demonstrated the ecological sorting of herbaceous C3 and C4 species along gradients of precipitation and temperature: C4 herbaceous species typically occupy drier and warmer environments than their C3 relatives. However, it is unclear if this pattern holds true for C4 tree species, which are unique to Euphorbiaceae and found only on the Hawaiian Islands. Here, we combine occurrence data with local environmental and soil datasets to, for the first time, distinguish the ecological factors associated with photosynthetic diversification in the tree life form. These data are presented within a phylogenetic framework. We show that C3 and C4 trees inhabit similar environments, but that C4 photosynthesis expands the ecological niche in trees relative to that of C3 tree species. In particular, when compared with C3 trees, C4 trees moved into higher elevation habitats with characteristically sparse vegetation (and thus greater sunlight) and cooler temperatures, a pattern which contrasts with that of herbaceous species. Understanding the relationship between C4 photosynthesis and ecological niche in tree species has implications for establishing how C4 photosynthesis has, in this rare instance, evolved in trees, and whether this unique combination of traits could be exploited from an engineering perspective.


Asunto(s)
Ecosistema , Fotosíntesis , Ciclo del Carbono , Filogenia , Temperatura
10.
Mol Plant ; 15(4): 591-592, 2022 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-35307592
11.
Plant Cell Environ ; 45(5): 1398-1411, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35201618

RESUMEN

C4 photosynthesis is thought to have evolved via intermediate stages, with changes towards the C4 phenotype gradually enhancing photosynthetic performance. This hypothesis is widely supported by modelling studies, but experimental tests are missing. Mixing of C4 components to generate artificial intermediates can be achieved via crossing, and the grass Alloteropsis semialata represents an outstanding study system since it includes C4 and non-C4 populations. Here, we analyse F1 hybrids between C3 and C4 , and C3 +C4 and C4 genotypes to determine whether the acquisition of C4 characteristics increases photosynthetic performance. The hybrids have leaf anatomical characters and C4 gene expression profiles that are largely intermediate between those of their parents. Carbon isotope ratios are similarly intermediate, which suggests that a partial C4 cycle coexists with C3 carbon fixation in the hybrids. This partial C4 phenotype is associated with C4 -like photosynthetic efficiency in C3 +C4 × C4 , but not in C3 × C4 hybrids, which are overall less efficient than both parents. Our results support the hypothesis that the photosynthetic gains from the upregulation of C4 characteristics depend on coordinated changes in anatomy and biochemistry. The order of acquisition of C4 components is thus constrained, with C3 +C4 species providing an essential step for C4 evolution.


Asunto(s)
Fotosíntesis , Poaceae , Ciclo del Carbono , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Poaceae/genética , Regulación hacia Arriba/genética
12.
Mol Biol Evol ; 38(9): 3724-3736, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33950261

RESUMEN

The impact of human-mediated environmental change on the evolutionary trajectories of wild organisms is poorly understood. In particular, capacity of species to adapt rapidly (in hundreds of generations or less), reproducibly and predictably to extreme environmental change is unclear. Silene uniflora is predominantly a coastal species, but it has also colonized isolated, disused mines with phytotoxic, zinc-contaminated soils. To test whether rapid, parallel adaptation to anthropogenic pollution has taken place, we used reduced representation sequencing (ddRAD) to reconstruct the evolutionary history of geographically proximate mine and coastal population pairs and found largely independent colonization of mines from different coastal sites. Furthermore, our results show that parallel evolution of zinc tolerance has occurred without gene flow spreading adaptive alleles between mine populations. In genomic regions where signatures of selection were detected across multiple mine-coast pairs, we identified genes with functions linked to physiological differences between the putative ecotypes, although genetic differentiation at specific loci is only partially shared between mine populations. Our results are consistent with a complex, polygenic genetic architecture underpinning rapid adaptation. This shows that even under a scenario of strong selection and rapid adaptation, evolutionary responses to human activities (and other environmental challenges) may be idiosyncratic at the genetic level and, therefore, difficult to predict from genomic data.


Asunto(s)
Metales Pesados , Adaptación Fisiológica/genética , Ecotipo , Contaminación Ambiental , Flujo Genético , Humanos , Metales Pesados/análisis
13.
New Phytol ; 230(6): 2474-2486, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33887801

RESUMEN

Lateral gene transfer (LGT) occurs in a broad range of prokaryotes and eukaryotes, occasionally promoting adaptation. LGT of functional nuclear genes has been reported among some plants, but systematic studies are needed to assess the frequency and facilitators of LGT. We scanned the genomes of a diverse set of 17 grass species that span more than 50 Ma of divergence and include major crops to identify grass-to-grass protein-coding LGT. We identified LGTs in 13 species, with significant variation in the amount each received. Rhizomatous species acquired statistically more genes, probably because this growth habit boosts opportunities for transfer into the germline. In addition, the amount of LGT increases with phylogenetic relatedness, which might reflect genomic compatibility among close relatives facilitating successful transfers. However, genetic exchanges among highly divergent species indicates that transfers can occur across almost the entire family. Overall, we showed that LGT is a widespread phenomenon in grasses that has moved functional genes across the grass family into domesticated and wild species alike. Successful LGTs appear to increase with both opportunity and compatibility.


Asunto(s)
Transferencia de Gen Horizontal , Poaceae , Evolución Molecular , Filogenia , Poaceae/genética , Células Procariotas
14.
Mol Ecol ; 30(9): 2116-2130, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33682242

RESUMEN

Geographical isolation facilitates the emergence of distinct phenotypes within a single species, but reproductive barriers or selection are needed to maintain the polymorphism after secondary contact. Here, we explore the processes that maintain intraspecific variation of C4 photosynthesis, a complex trait that results from the combined action of multiple genes. The grass Alloteropsis semialata includes C4 and non-C4 populations, which have coexisted as a polyploid series for more than 1 million years in the miombo woodlands of Africa. Using population genomics, we show that there is genome-wide divergence for the photosynthetic types, but the current geographical distribution does not reflect a simple habitat displacement scenario as the genetic clusters overlap, being occasionally mixed within a given habitat. Despite evidence of recurrent introgression between non-C4 and C4 groups, in both diploids and polyploids, the distinct genetic lineages retain their identity, potentially because of selection against hybrids. Coupled with strong isolation by distance within each genetic group, this selection created a geographical mosaic of photosynthetic types. Diploid C4 and non-C4 types never grew together, and the C4 type from mixed populations constantly belonged to the hexaploid lineage. By limiting reproductive interactions between photosynthetic types, the ploidy difference probably allows their co-occurrence, reinforcing the functional diversity within this species. Together, these factors enabled the persistence of divergent physiological traits of ecological importance within a single species despite gene flow and habitat overlap.


Asunto(s)
Flujo Génico , Poaceae , África , Ecosistema , Fotosíntesis/genética , Poaceae/genética , Poliploidía
15.
Proc Biol Sci ; 287(1938): 20201960, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171085

RESUMEN

C4 photosynthesis evolved multiple times independently in angiosperms, but most origins are relatively old so that the early events linked to photosynthetic diversification are blurred. The grass Alloteropsis semialata is an exception, as this species encompasses C4 and non-C4 populations. Using phylogenomics and population genomics, we infer the history of dispersal and secondary gene flow before, during and after photosynthetic divergence in A. semialata. We further analyse the genome composition of individuals with varied ploidy levels to establish the origins of polyploids in this species. Detailed organelle phylogenies indicate limited seed dispersal within the mountainous region of origin and the emergence of a C4 lineage after dispersal to warmer areas of lower elevation. Nuclear genome analyses highlight repeated secondary gene flow. In particular, the nuclear genome associated with the C4 phenotype was swept into a distantly related maternal lineage probably via unidirectional pollen flow. Multiple intraspecific allopolyploidy events mediated additional secondary genetic exchanges between photosynthetic types. Overall, our results show that limited dispersal and isolation allowed lineage divergence, with photosynthetic innovation happening after migration to new environments, and pollen-mediated gene flow led to the rapid spread of the derived C4 physiology away from its region of origin.


Asunto(s)
Evolución Biológica , Poaceae/fisiología , Carbono , Flujo Génico , Genoma , Orgánulos , Fenotipo , Fotosíntesis/fisiología , Filogenia , Poliploidía
16.
Mol Biol Evol ; 37(11): 3094-3104, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-32521019

RESUMEN

The adaptation of proteins for novel functions often requires changes in their kinetics via amino acid replacement. This process can require multiple mutations, and therefore extended periods of selection. The transfer of genes among distinct species might speed up the process, by providing proteins already adapted for the novel function. However, this hypothesis remains untested in multicellular eukaryotes. The grass Alloteropsis is an ideal system to test this hypothesis due to its diversity of genes encoding phosphoenolpyruvate carboxylase, an enzyme that catalyzes one of the key reactions in the C4 pathway. Different accessions of Alloteropsis either use native isoforms relatively recently co-opted from other functions or isoforms that were laterally acquired from distantly related species that evolved the C4 trait much earlier. By comparing the enzyme kinetics, we show that native isoforms with few amino acid replacements have substrate KM values similar to the non-C4 ancestral form, but exhibit marked increases in catalytic efficiency. The co-option of native isoforms was therefore followed by rapid catalytic improvements, which appear to rely on standing genetic variation observed within one species. Native C4 isoforms with more amino acid replacements exhibit additional changes in affinities, suggesting that the initial catalytic improvements are followed by gradual modifications. Finally, laterally acquired genes show both strong increases in catalytic efficiency and important changes in substrate handling. We conclude that the transfer of genes among distant species sharing the same physiological novelty creates an evolutionary shortcut toward more efficient enzymes, effectively accelerating evolution.


Asunto(s)
Evolución Biológica , Transferencia de Gen Horizontal , Fosfoenolpiruvato Carboxilasa/genética , Fotosíntesis/genética , Poaceae/genética , Sustitución de Aminoácidos , Poaceae/enzimología
18.
Curr Biol ; 29(22): 3921-3927.e5, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31679927

RESUMEN

Evidence of eukaryote-to-eukaryote lateral gene transfer (LGT) has accumulated in recent years [1-14], but the selective pressures governing the evolutionary fate of these genes within recipient species remain largely unexplored [15, 16]. Among non-parasitic plants, successful LGT has been reported between different grass species [5, 8, 11, 16-19]. Here, we use the grass Alloteropsis semialata, a species that possesses multigene LGT fragments that were acquired recently from distantly related grass species [5, 11, 16], to test the hypothesis that the successful LGT conferred an advantage and were thus rapidly swept into the recipient species. Combining whole-genome and population-level RAD sequencing, we show that the multigene LGT fragments were rapidly integrated in the recipient genome, likely due to positive selection for genes encoding proteins that added novel functions. These fragments also contained physically linked hitchhiking protein-coding genes, and subsequent genomic erosion has generated gene presence-absence polymorphisms that persist in multiple geographic locations, becoming part of the standing genetic variation. Importantly, one of the hitchhiking genes underwent a secondary rapid spread in some populations. This shows that eukaryotic LGT can have a delayed impact, contributing to local adaptation and intraspecific ecological diversification. Therefore, while short-term LGT integration is mediated by positive selection on some of the transferred genes, physically linked hitchhikers can remain functional and augment the standing genetic variation with delayed adaptive consequences.


Asunto(s)
Transferencia de Gen Horizontal/genética , Poaceae/genética , Evolución Biológica , Evolución Molecular , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Genoma/genética , Filogenia
19.
Evolution ; 73(9): 1986-1995, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31298414

RESUMEN

Although it is now widely accepted that speciation can occur in the face of continuous gene flow, with little or no spatial separation, the mechanisms and genomic architectures that permit such divergence are still debated. Here, we examined speciation in the face of gene flow in the Howea palms of Lord Howe Island, Australia. We built a genetic map using a novel method applicable to long-lived tree species, combining it with double digest restriction site-associated DNA sequencing of multiple individuals. Based upon various metrics, we detected 46 highly differentiated regions throughout the genome, four of which contained genes with functions that are particularly relevant to the speciation scenario for Howea, specifically salt and drought tolerance.


Asunto(s)
Arecaceae/genética , Arecaceae/fisiología , Evolución Biológica , Especiación Genética , Islas Genómicas , Alelos , Australia , Mapeo Cromosómico , ADN de Plantas/genética , Sequías , Flujo Génico , Genes de Plantas , Ligamiento Genético , Genotipo , Geografía , Modelos Genéticos , Tolerancia a la Sal , Especificidad de la Especie , Simpatría
20.
J Exp Bot ; 70(12): 3255-3268, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30949663

RESUMEN

C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.


Asunto(s)
Carbono/metabolismo , Expresión Génica , Poaceae/fisiología , Evolución Biológica , Fenotipo , Poaceae/enzimología , Poaceae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...